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Definitions

Recall that a Diophantine equation is an equation of the form

D(x1, . . . , xm) = 0, (1)

where D is a polynomial with integer coefficients.

We will be concerned with families of Diophantine equations,
understood as a relation of the form

D(a1, . . . , an, x1, . . . , xm) = 0, (2)

where a1, . . . , an are parameters and x1, . . . , xm are unknowns.

For different values of the parameters, one can obtain
equations that do have solutions as well as equations that do
not.
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Definitions

The parametric equation (2) defines a set M consisting of
n-tuples of values of the parameters a1, . . . , an for which there
are values of the unknowns x1, . . . , xm satisfying (2):

〈a1, . . . , an〉 ∈M⇔ ∃x1 . . . xm [D(a1, . . . , an, x1, . . . , xm) = 0].

M is called a Diophantine set, n is called the dimension of M
and above is its Diophantine representation.
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Basic operations

The union of two Diophantine sets of the same dimension is
Diophantine, namely

D1(a1, . . . , an, x1, . . . , xm1) · D2(a1, . . . , an, x1, . . . , xm2) = 0,

if D1(a1, . . . , an, x1, . . . , xm1) = 0 and
D2(a1, . . . , an, x1, . . . , xm2) = 0 are Diophantine
representations of two sets.
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Basic operations

The intersection of two Diophantine sets of the same
dimension is Diophantine, namely

D2
1 (a1, . . . , an, x1, . . . , xm1) + D2

2 (a1, . . . , an, y1, . . . , ym2) = 0,

if D1(a1, . . . , an, x1, . . . , xm1) = 0 and
D2(a1, . . . , an, y1, . . . , ym2) = 0 are Diophantine
representations of two sets.
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Developing a logical language

Although Diophantine sets, the operations of their unions and
intersections, and the relation of set membership are
sufficiently expressive, it is often more convenient to use an
equivalent language of properties and relations.

Example: Instead of considering the set with the
representation

a− x2 = 0,

we can say that the property (over natural numbers) “is a
perfect square” is Diophantine.
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Developing a logical language

A relation R among n natural numbers is called a
Diophantine relation if the set of all n-tuples for which the
relation holds is Diophantine.

An equivalence of the form

R(a1, . . . , an)⇔ ∃x1, . . . , xm [D(a1, . . . , an, x1, . . . , xm) = 0]

is called a Diophantine representation of the relation R.
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Connectives

Disjunction: If R1 and R2 are Diophantine relations then the
relation R such that for all a1, . . . , an

R(a1, . . . , an)⇔ R1(a1, . . . , an) ∨R2(a1, . . . , an)

is also Diophantine.

Conjunction: The relation R such that for all a1, . . . , an

R(a1, . . . , an)⇔ R1(a1, . . . , an) ∧R2(a1, . . . , an)

is also Diophantine, provided of course that R1 and R2 are
Diophantine.
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Permitted quantifiers

Thus, any formula constructed from parametric Diophantine
equations by using, in whatever order, disjunction,
conjunction, and existential quantification can be regarded as
constituting a generalized Diophantine representation.

In fact, we can do better and show that the bounded universal
quantifier is a part of our language. Namely, if P is a
polynomial then the set S such that

S = { 〈y , x1, . . . , xn〉 | ∀z ≤ y ∃y1, . . . , ym
[P(y , z , x1, . . . , xn, y1, . . . , ym) = 0]},

is Diophantine.
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Importance?

Many number-theoretic properties can be written in the form
∀n P(n), where P is a decidable property over natural
numbers.

For example, it is obvious that the set of primes is defined by
the formula:

a > 1 & ∀x < a ∀y < a ∃v [(a− (x + 2)(y + 2))2−v −1 = 0].

Other examples include Goldbach’s conjecture, Riemann
hypothesis, and the four color theorem.

An important step towards proving the recursive unsolvability
of Hilbert’s tenth problem, namely, that every recursively
enumerable set is Diophantine.
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Eliminating the bounded universal quantifier

Davis, Putnam, Robinson technique using the Chinese
remainder theorem

Matiyasevich’s technique via Turing machines

Matiyasevich’s technique via summations of generalized
geometric progressions

Given the size of the polynomials we will be dealing with, the
Davis, Putnam, and Robinson technique is the most useful for
our purposes.
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Bovykin and De Smet’s Project

A prefixed polynomial equation (or “a polynomial expression
with a quantifier prefix”) is an equation of the form
P(x1, . . . , xn) = 0, where the variables x1, . . . , xn range over
natural numbers, preceded by quantifiers over some, if not all,
of its variables.



Introduction Unprovability theory Selected References

Bovykin and De Smet’s Project

Bovykin and De Smet want to study the collection of all
prefixed polynomial equations, with the equivalence of relation
of being “EFA-provably equivalent” on its members.

“Probably every theorem published in Annals of Mathematics
whose statement involves only finitary mathematical objects
(i.e., an arithmetical statement) can be proved in EFA.”
-Friedman

It is not difficult to obtain a prefixed polynomial
representation, but the value of such polynomial expressions is
that they provide concrete examples of unprovable statements
and explicit illustrations of deep logical phenomena.
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Paris-Harrington Theorem

The following combinatorial principle is unprovable in PA:

∀ e, r , k , ∃ M, such that for every coloring f of e-subsets of
[M + 1] = {0, 1, . . . ,M} into r colors, there is an
f -homogeneous Y ⊆ [M + 1] of size at least min(Y ) + k − 1.

First “natural” example of incompleteness in PA. Many others
followed.
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Unprovability in IΣ1

The following combinatorial principle is unprovable in IΣ1:

∀ k, ∃ M such that for every coloring f of 2-subsets of
[M + 1] = {0, . . . ,M} into r colors, there is an
f -homogeneous Y ⊆ [M + 1] of size at least min(Y ) + k − 1.

We will call this PH2, as it is a special case of the original
Paris-Harrington theorem (Erdös-Mills).
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Prefixed polynomial equation for PH2

For r > 2, (where r is the only free variable which represents
the colors), PH2 is equivalent to the following prefixed
polynomial equation (Bovykin and De Smet):
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Prefixed polynomial equation for PH2

∀k ∃M ∀ab ∃cdAX ∀xy ∃BCF ∀fg ∃ehilnpq
[x · (y + B − x) · (A + k + B − y) · ((((f − A)2(g − 1)2)

· ((f − B)2 + (g − x)2) · ((f − C )2 + (g − y)2)− h − 1)

· ((dgi + i − c + f )2 + (f + h − dg)2) + (B + l + 1− C )2

+ (C + n −M)2 + (F + e − b(B + C 2))2 + (bp(B + C 2)

+ p − a + F )2 + ((F − X )2 − qr)2)] = 0.
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Challenges for the Atlas

Although in the case of PH2 covers only a few lines, the
challenge comes when transforming this polynomial from its
Π0
6 form to its EFA-provably equivalent Diophantine form.

Here, bounding the universal quantifiers and then eliminating
them introduces a drastic increase in the number of variables
of the original prefixed polynomial representation, to the point
that the resulting Diophantine form is too long to be practical
to write (or include in the Atlas).

Thus, naive attempts to obtain Diophantine representations
(namely, a direct application of the results of DPRM and
possibly with some slight modifications but with no drastic
tricks) for PH2 (and certainly other unprovable statements)
yields unwriteable representations.
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Our results

Our results: A 138 variable exponential Diophantine
representation or a 347 variable Diophantine representation.

DPRM method: A 233 variable exponential Diophantine
representation or a 1055 variable Diophantine representation.

Conservation of 95 variables and 708 variables for each case,
respectively.
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Diophantine coding

To code a tuple 〈a1, . . . , an〉 of arbitrary length we use Gödel
coding.

If we let b1, . . . , bn be any pairwise coprime numbers such that

ai < bi , i = 1, . . . , n. (3)

By the CRT, we can find a number a such that

ai = rem(a, bi ), i = 1, . . . , n.

We will take bi = bi + 1, where b is a multiple of n! large
enough to imply the inequalities in (3).

All the elements of 〈a1, . . . , an〉 are uniquely determined by
a, b1, . . . , bn.
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PH2 representation

Let [M + 1]2 represent the set of all the 2-subsets of [M + 1].
Moreover, f ({x1, . . . , xn}) will be shortened to f (x1, . . . , xn)
with the assumption that the xi ’s are increasing.

The main idea is to represent the colorings f : [M + 1]2 → r
as sequences 〈a1, . . . , an〉 such that if h < l ∈ [M + 1] and
h + l2 = i , then

ai ≡ f (h, l) mod r .

Observe that if h < l , then the function that associates (h, l)
with h + l2 is injective.

So we use Gödel coding to code the sequence 〈a1, . . . , an〉 as
the pair (a, b) such that

ai = rem(a, bi ).
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PH2 representation

If (a, b) codes the sequence 〈a1, . . . , an〉 such that
n < M + (M + 1)2, then not all values of possible 2-subsets of
[M + 1] will be covered. This can be fixed if we extend the
sequence by adding a’s at the end until the length of the
sequence is at least M + (M + 1)2.

This extended sequence now defines a function
f : [M + 1]2 → r as previously described.

Observe that the equalities ai = rem(a, bi + 1) and
ai ≡ f (h, l) mod r now hold for all h < l ∈ [M + 1] where
i = h + l2.

The subset H will be coded as the increasing sequence
〈c1, . . . , cp〉 such that ci ∈ [M + 1] for i = 1, . . . , p. This is
coded as a pair (c , d) by Gödel coding.
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n < M + (M + 1)2, then not all values of possible 2-subsets of
[M + 1] will be covered. This can be fixed if we extend the
sequence by adding a’s at the end until the length of the
sequence is at least M + (M + 1)2.

This extended sequence now defines a function
f : [M + 1]2 → r as previously described.

Observe that the equalities ai = rem(a, bi + 1) and
ai ≡ f (h, l) mod r now hold for all h < l ∈ [M + 1] where
i = h + l2.

The subset H will be coded as the increasing sequence
〈c1, . . . , cp〉 such that ci ∈ [M + 1] for i = 1, . . . , p. This is
coded as a pair (c , d) by Gödel coding.
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Intermediate representation

∀k ∃M ∀ab ∃cdAX ∀xy ∃BCF
[(0 < x ∧ x < y ∧ y ≤ A + k − 1)→
(A = rem(c , d + 1) ∧ B = rem(c , dx + 1) ∧ C = rem(c , dy + 1)

∧ B < C ∧ C < M + 1 ∧ F = rem(a, b(B + C 2) + 1)

∧ F ≡ X mod r)].



Introduction Unprovability theory Selected References

Intermediate representation

We will be taking k ,M, a, b, r as parameters. Bounding
quantifiers we have then that:

∃cdAX ∀x ≤ A + k − 3 ∀y ≤ A + k − 2 ∃BCF
[x < y ∧ A = rem(c, d + 1) ∧ B = rem(c , d(x + 1) + 1)

∧ C = rem(c , d(y + 1) + 1) ∧ B < C

∧ C < M + 1 ∧ F = rem(a, b(B + C 2) + 1) ∧ F ≡ X mod r ].
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Intermediate representation

We can reduce the two bounded quantifiers to just one by
taking advantage of the fact that if x ≤ A + k − 3 and
y ≤ A + k − 2, then J(x , y) ≤ J(A + k − 3,A + k − 2), where
J is Cantor’s function defined for natural numbers m and n as
J(m, n) = (m + n)(m + n + 1)/2.

The elimination of the final single bounded universal
quantifier then gives us the desired exponential Diophantine
representation in 138 variables.
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