Saussurean Compositionality

Dag Westerståhl

Stockholm University

4th CSLI Workshop on Logic, Rationality & Intelligent Interaction
Stanford University
May 30–31, 2015
Recent proponents of direct compositionality seem to equate this property with the claim that phonology, syntax, and semantics can be generated in parallel: ‘triple grammars’ (let’s say).
Recent proponents of direct compositionality seem to equate this property with the claim that phonology, syntax, and semantics can be generated in parallel: ‘triple grammars’ (let’s say).

... the semantics works in tandem with the syntax: each syntactic rule which predicts the existence of some well-formed expression (as output) is paired with a semantic rule which gives the meaning of the output expression in terms of the meaning(s) of the input expressions. This is what we mean by Direct Compositionality.

Thus every expression of a language—including the basic expressions (the words)—can be seen as a triple ⟨[sound], syntactic category, meaning⟩. ... A rule is thus something which takes one or more triples as input and yields one as output. (Pauline Jacobson, Compositional Semantics. An Introduction to the Syntax-Semantics Interface)
Some initial questions:

- Are triple grammars automatically compositionally?
Direct compositionality and triple grammars, cont.

Some initial questions:

- Are triple grammars automatically compositional?
- If not, what exactly does it mean to say that they are?
Direct compositionality and triple grammars, cont.

Some initial questions:

- Are triple grammars automatically compositional?
- If not, what exactly does it mean to say that they are?
- And is compositionality of triple grammars just a notational variant of compositionality in the standard format?
Some initial questions:

- Are triple grammars automatically compositional?
- If not, what exactly does it mean to say that they are?
- And is compositionality of triple grammars just a notational variant of compositionality in the standard format?

As far as I know, only Marcus Kracht has discussed these theoretical issues in any detail, in particular, in his 2011 book, *Interpreted Languages and Compositionality*.
Some initial questions:

- Are triple grammars automatically compositional?
- If not, what exactly does it mean to say that they are?
- And is compositionality of triple grammars just a notational variant of compositionality in the standard format?

As far as I know, only Marcus Kracht has discussed these theoretical issues in any detail, in particular, in his 2011 book, *Interpreted Languages and Compositionality*.

He defines about 20 different notions of compositionality, for the new format...
Some initial questions:

- Are triple grammars automatically compositional?
- If not, what exactly does it mean to say that they are?
- And is compositionality of triple grammars just a notational variant of compositionality in the standard format?

As far as I know, only Marcus Kracht has discussed these theoretical issues in any detail, in particular, in his 2011 book, *Interpreted Languages and Compositionality*.

He defines about 20 different notions of compositionality, for the new format... But he doesn’t compare them with the standard notion.
Direct compositionality and triple grammars, cont.

Some initial questions:

- Are triple grammars automatically compositional?
- If not, what exactly does it mean to say that they are?
- And is compositionality of triple grammars just a notational variant of compositionality in the standard format?

As far as I know, only Marcus Kracht has discussed these theoretical issues in any detail, in particular, in his 2011 book, *Interpreted Languages and Compositionality*.

He defines about 20 different notions of compositionality, for the new format...

But he doesn’t compare them with the standard notion.

Hence this paper.
Sign-based grammars

Following de Saussure (1916), a sign is a form-meaning pair, or a pair of perceptual and conceptual content, or ...
Sign-based grammars

Following de Saussure (1916), a sign is a form-meaning pair, or a pair of perceptual and conceptual content, or . . .

Of course, triples are pairs: \(\langle\langle\text{sound,category}\rangle,\text{meaning}\rangle,\)
Sign-based grammars

Following de Saussure (1916), a sign is a form-meaning pair, or a pair of perceptual and conceptual content, or . . .

Of course, triples are pairs: ⟨⟨sound,category⟩,meaning⟩, or ⟨PHON,SYNSEM⟩, or . . .
Sign-based grammars

Following de Saussure (1916), a sign is a form-meaning pair, or a pair of perceptual and conceptual content, or . . .

Of course, triples are pairs: ⟨⟨sound,category⟩,meaning⟩, or ⟨PHON,SYNSEM⟩, or . . .

And many contemporary linguists (besides direct compositionalists) have revived the sign format.
Sign-based grammars

Following de Saussure (1916), a sign is a form-meaning pair, or a pair of perceptual and conceptual content, or . . .

Of course, triples are pairs: \(\langle \langle \text{sound}, \text{category} \rangle, \text{meaning} \rangle \), or \(\langle \text{PHON}, \text{SYNSEM} \rangle \), or . . .

And many contemporary linguists (besides direct compositionalists) have revived the sign format.

It is a basic idea in Construction Grammar (Lakoff, Kaye, Fillmore, . . .). From Lakoff’s *Women, Fire, and Dangerous Things* (1987):

Suppose we think of a language as a collection of form-meaning pairs, where the meanings are concepts in a given conceptual system. (539)
Sign-based grammars

Following de Saussure (1916), a sign is a form-meaning pair, or a pair of perceptual and conceptual content, or . . .

Of course, triples are pairs: \(\langle \langle \text{sound}, \text{category} \rangle, \text{meaning} \rangle \), or \(\langle \text{PHON}, \text{SYNSEM} \rangle \), or . . .

And many contemporary linguists (besides direct compositionalists) have revived the sign format.

It is a basic idea in Construction Grammar (Lakoff, Kaye, Fillmore,. . .). From Lakoff’s Women, Fire, and Dangerous Things (1987):

Suppose we think of a language as a collection of form-meaning pairs, where the meanings are concepts in a given conceptual system. (539)

Interestingly, Lakoff takes this to support non-compositionality.

– Syntactic categories are not autonomous, nor are they completely predictable form semantic considerations.
– The meanings of whole grammatical constructions are not computable by general rules from the meanings of their parts. (582)
Sign-based grammars, cont

HPSG (Pollard, Sag, Wasow, ...) early on endorsed a sign-based format.
Sign-based grammars, cont

HPSG (Pollard, Sag, Wasow, ...) early on endorsed a sign-based format.

In recent **SBCG** (Sign-Based Construction Grammar; Sag, Boas, Kaye, ...), HPSG and Construction Grammar are merged.
Sign-based grammars, cont

HPSG (Pollard, Sag, Wasow, ...) early on endorsed a sign-based format.

In recent SBCG (Sign-Based Construction Grammar; Sag, Boas, Kaye, ...), HPSG and Construction Grammar are merged.

Here the elements of signs are feature structures, but the idea is (explicitly) from de Saussure (see Boas and Sag (eds.), Sign-Based Construction Grammar, CSLI Publications, Stanford, 2012).
Sign-based grammars, cont

HPSG (Pollard, Sag, Wasow, …) early on endorsed a sign-based format.

In recent SBCG (Sign-Based Construction Grammar; Sag, Boas, Kaye, …), HPSG and Construction Grammar are merged.

Here the elements of signs are feature structures, but the idea is (explicitly) from de Saussure (see Boas and Sag (eds.), *Sign-Based Construction Grammar*, CSLI Publications, Stanford, 2012).

In HPSG and SBCG compositionality is built-in as a constraint.
Sign-based grammars, cont

HPSG (Pollard, Sag, Wasow, ...) early on endorsed a sign-based format.

In recent **SBCG** (Sign-Based Construction Grammar; Sag, Boas, Kaye, ...), HPSG and Construction Grammar are merged.

Here the elements of signs are feature structures, but the idea is (explicitly) from de Saussure (see Boas and Sag (eds.), *Sign-Based Construction Grammar*, CSLI Publications, Stanford, 2012).

In HPSG and SBCG **compositionality is built-in** as a constraint.

Another example: Yoad Winter’s forthcoming textbook *Elements of Formal Semantics* combines the sign format (again explicitly referring to de Saussure) with ideas from *Abstract Categorial Grammar* (de Groote, Pogodalla).
Sign-based grammars, cont

HPSG (Pollard, Sag, Wasow, …) early on endorsed a sign-based format.

In recent **SBCG** (Sign-Based Construction Grammar; Sag, Boas, Kaye, …), HPSG and Construction Grammar are merged.

Here the elements of signs are feature structures, but the idea is (explicitly) from de Saussure (see Boas and Sag (eds.), *Sign-Based Construction Grammar*, CSLI Publications, Stanford, 2012).

In HPSG and SBCG compositionality is built-in as a constraint.

Another example: Yoad Winter’s forthcoming textbook *Elements of Formal Semantics* combines the sign format (again explicitly referring to de Saussure) with ideas from *Abstract Categorial Grammar* (de Groote, Pogodalla). Compositionality is (de facto) enforced.
So it seems to be of some interest to pursue questions like these:

- What is the exact relation between a sign-based format and compositionality?
So it seems to be of some interest to pursue questions like these:

- What is the exact relation between a sign-based format and compositionality?

- More generally, is this format just a technical convenience or does it have expressive advantages over the traditional format? (and vice versa)
So it seems to be of some interest to pursue questions like these:

- What is the exact relation between a sign-based format and compositionality?
- More generally, is this format just a technical convenience or does it have expressive advantages over the traditional format? (and vice versa)

I will start with a few brief remarks on the second (larger and less precise) question.
So it seems to be of some interest to pursue questions like these:

- What is the exact relation between a sign-based format and compositionality?
- More generally, is this format just a technical convenience or does it have expressive advantages over the traditional format? (and vice versa)

I will start with a few brief remarks on the second (larger and less precise) question.

Then I will address the first question in some detail, and draw a few conclusions.
Language as a relation between form and content

Let \(E \) be a set of expressions and \(M \) a set of meanings.
Let E be a set of expressions and M a set of meanings.

Expressions could be strings (words, phonological representations, . . .), and meanings could concepts, feature structures, model-theoretic objects, . . . , but we need no assumptions here about what they are.
Let E be a set of expressions and M a set of meanings.

Expressions could be strings (words, phonological representations, . . .), and meanings could concepts, feature structures, model-theoretic objects, . . . , but we need no assumptions here about what they are.

A language L is a set of expression-meaning pairs, i.e. signs:

$$L \subseteq E \times M$$
Let E be a set of expressions and M a set of meanings.

Expressions could be strings (words, phonological representations, ...), and meanings could concepts, feature structures, model-theoretic objects, ..., but we need no assumptions here about what they are.

A language L is a set of expression-meaning pairs, i.e. signs:

$$L \subseteq E \times M$$

Thus, a language is a relation between expressions and meanings.
Let E be a set of expressions and M a set of meanings.

Expressions could be strings (words, phonological representations,...), and meanings could concepts, feature structures, model-theoretic objects, ..., but we need no assumptions here about what they are.

A language L is a set of expression-meaning pairs, i.e. signs:

$$L \subseteq E \times M$$

Thus, a language is a relation between expressions and meanings.

A significant extension of de Saussure’s idea (in all the modern variants) is that both lexical items and complex phrases are signs.
Language as a relation between form and content

Let E be a set of expressions and M a set of meanings.

Expressions could be strings (words, phonological representations, . . .), and meanings could concepts, feature structures, model-theoretic objects, . . . , but we need no assumptions here about what they are.

A language L is a set of expression-meaning pairs, i.e. signs:

$$L \subseteq E \times M$$

Thus, a language is a relation between expressions and meanings.

A significant extension of de Saussure’s idea (in all the modern variants) is that both lexical items and complex phrases are signs.

So grammar rules (or constraints) generate the well-formed signs, which constitute the language L.
Sign-based ambiguity and synonymy

A conspicuous difference between the two frameworks is the treatment of ambiguity (and, dually, synonymy).
A conspicuous difference between the two frameworks is the treatment of ambiguity (and, dually, synonymy).

Notation: e, e', \ldots are expressions, m, m', \ldots meanings, p, q, \ldots signs.
A conspicuous difference between the two frameworks is the treatment of ambiguity (and, dually, synonymy).

Notation: e, e', \ldots are expressions, m, m', \ldots meanings, p, q, \ldots signs.

$
\pi_1, \pi_2$ are (inverse) **pairing functions**:

$$\pi_1(\langle e, m \rangle) = e \text{ and } \pi_2(\langle e, m \rangle) = m$$

NB There are no corresponding terms on the meaning side.
A conspicuous difference between the two frameworks is the treatment of ambiguity (and, dually, synonymy).

Notation: e, e', \ldots are expressions, m, m', \ldots meanings, p, q, \ldots signs.

π_1, π_2 are (inverse) pairing functions:

$$\pi_1(\langle e, m \rangle) = e \text{ and } \pi_2(\langle e, m \rangle) = m$$

Define:

- (p, q) is a (non-trivial) ambiguity if $\pi_1(p) = \pi_1(q)$ (and $p \neq q$). e is ambiguous if it is the expression in an ambiguity.
Sign-based ambiguity and synonymy

A conspicuous difference between the two frameworks is the treatment of ambiguity (and, dually, synonymy).

Notation: e, e', \ldots are expressions, m, m', \ldots meanings, p, q, \ldots signs.

$
\pi_1, \pi_2$ are (inverse) pairing functions:
\[
\pi_1(\langle e, m \rangle) = e \quad \text{and} \quad \pi_2(\langle e, m \rangle) = m
\]

Define:

- (p, q) is a (non-trivial) ambiguity if $\pi_1(p) = \pi_1(q)$ (and $p \neq q$). e is ambiguous if it is the expression in an ambiguity.
- (p, q) is a (non-trivial) synonymy if $\pi_2(p) = \pi_2(q)$ (and $p \neq q$). e and e' are synonymous if they are the expressions in a synonymy.
Sign-based ambiguity and synonymy

A conspicuous difference between the two frameworks is the treatment of ambiguity (and, dually, synonymy).

Notation: e, e', \ldots are expressions, m, m', \ldots meanings, p, q, \ldots signs.

$
\pi_1, \pi_2$ are (inverse) pairing functions:

$$
\pi_1(\langle e, m \rangle) = e \text{ and } \pi_2(\langle e, m \rangle) = m
$$

Define:

- (p, q) is a (non-trivial) ambiguity if $\pi_1(p) = \pi_1(q)$ (and $p \neq q$). e is ambiguous if it is the expression in an ambiguity.

- (p, q) is a (non-trivial) synonymy if $\pi_2(p) = \pi_2(q)$ (and $p \neq q$). e and e' are synonymous if they are the expressions in a synonymy.

NB There are no corresponding terms on the meaning side.
Ambiguity in the standard account

By the **standard account** we mean syntax in the form of a grammar

\[E = (E, A, f^E)_{f \in \Sigma} \]

which generates \(E \) from the atoms (lexical items) in \(A \subseteq E \) via the functions (grammar rules) \(f^E \) (where \(\Sigma \) is a **signature**),
Ambiguity in the standard account

By the standard account we mean syntax in the form of a grammar

\[E = (E, A, f^E)_{f \in \Sigma} \]

which generates \(E \) from the atoms (lexical items) in \(A \subseteq E \) via the functions (grammar rules) \(f^E \) (where \(\Sigma \) is a signature), and a semantics as function

\[\mu : GT_E \rightarrow M \]

from terms, or derivations, or analysis trees, to meanings.
Ambiguity in the standard account

By the standard account we mean syntax in the form of a grammar

\[E = (E, A, f^E)_{f \in \Sigma} \]

which generates \(E \) from the atoms (lexical items) in \(A \subseteq E \) via the functions (grammar rules) \(f^E \) (where \(\Sigma \) is a signature), and a semantics as function

\[\mu : GT_E \to M \]

from terms, or derivations, or analysis trees, to meanings.

Analysis trees are represented as terms in the term algebra \(GT_E \) corresponding to \(E \), and are introduced precisely to handle ambiguity.
Ambiguity in the standard account

By the standard account we mean syntax in the form of a grammar

\[E = (E, A, f^E)_{f \in \Sigma} \]

which generates \(E \) from the atoms (lexical items) in \(A \subseteq E \) via the functions (grammar rules) \(f^E \) (where \(\Sigma \) is a signature), and a semantics as function

\[\mu : GTE \rightarrow M \]

from terms, or derivations, or analysis trees, to meanings.

Analysis trees are represented as terms in the term algebra \(GTE \) corresponding to \(E \), and are introduced precisely to handle ambiguity.

The standard treatment has no account of lexical ambiguity.
Ambiguity in the standard account

By the standard account we mean syntax in the form of a grammar

\[E = (E, A, f^E)_{f \in \Sigma} \]

which generates \(E \) from the atoms (lexical items) in \(A \subseteq E \) via the functions (grammar rules) \(f^E \) (where \(\Sigma \) is a signature), and a semantics as function

\[\mu : GT_E \rightarrow M \]

from terms, or derivations, or analysis trees, to meanings.

Analysis trees are represented as terms in the term algebra \(GT_E \) corresponding to \(E \), and are introduced precisely to handle ambiguity.

The standard treatment has no account of lexical ambiguity.

It has to introduce new atomic terms, say \(bank_1 \) and \(bank_2 \), with the same surface form.
Ambiguity in the standard account

By the standard account we mean syntax in the form of a grammar

$$E = (E, A, f^E)_{f \in \Sigma}$$

which generates E from the atoms (lexical items) in $A \subseteq E$ via the functions (grammar rules) f^E (where Σ is a signature), and a semantics as function

$$\mu : GT_E \rightarrow M$$

from terms, or derivations, or analysis trees, to meanings.

Analysis trees are represented as terms in the term algebra GT_E corresponding to E, and are introduced precisely to handle ambiguity.

The standard treatment has no account of lexical ambiguity.

It has to introduce new atomic terms, say $bank_1$ and $bank_2$, with the same surface form.

A sign-based account, on the other hand, simply has the two distinct signs $\langle bank, m_1 \rangle$ and $\langle bank, m_2 \rangle$ in the language.
What about structural ambiguity?

On the standard account, terms (analysis trees) are used for structural ambiguity: e.g. with the rules

\[N \rightarrow N \quad \text{(rule } f) \]
\[N \rightarrow A \ N \quad \text{(rule } g) \]

and atoms *old*, *men*, *women*, we get two distinct terms:

\[t = f(g(\text{old, men}), \text{women}) \]
\[u = g(\text{old, } f(\text{men, women})) \]

with the same surface form: \(\text{val}(t) = \text{val}(u) = \text{old men and women} \).
What about structural ambiguity?

On the standard account, terms (analysis trees) are used for structural ambiguity: e.g. with the rules

\[\text{N} \rightarrow \text{N} \text{ and N} \quad (\text{rule } f) \]
\[\text{N} \rightarrow \text{A N} \quad (\text{rule } g) \]

and atoms \textit{old}, \textit{men}, \textit{women}, we get two distinct terms:

\[t = f(g(\text{old, men}), \text{women}) \]
\[u = g(\text{old, } f(\text{men, women})) \]

with the same surface form: \(\text{val}(t) = \text{val}(u) = \textit{old men and women}. \)

A compositional semantics \(\mu \) yields

\[\mu(t) = r_f(r_g(m_o, m_m), m_w) = (m_o \cap m_m) \cup m_w = m \]
\[\mu(u) = r_g(m_o, r_f(m_m, m_w)) = m_o \cap (m_m \cup m_w) = m' \]

Since there are distinct terms (analysis trees) we can get distinct meanings.
Structural ambiguity, cont.

On the Saussurean account, we have rules F, G corresponding to f, g and μ for generating signs:

\[
F(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cup m_2 \rangle \\
G(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cap m_2 \rangle
\]
Structural ambiguity, cont.

On the Saussurean account, we have rules F, G corresponding to f, g and μ for generating signs:

\[
F(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cup m_2 \rangle \\
G(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cap m_2 \rangle
\]

Atoms: $\langle \text{old}, m_o \rangle, \langle \text{men}, m_m \rangle, \langle \text{women}, m_w \rangle \in L$.
On the Saussurean account, we have rules F, G corresponding to f, g and μ for generating signs:

\[
F(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cup m_2 \rangle \\
G(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \ e_2, m_1 \cap m_2 \rangle
\]

Atoms: $\langle \text{old}, m_o \rangle, \langle \text{men}, m_m \rangle, \langle \text{women}, m_w \rangle \in L$. Thus,

\[
F(G(\langle \text{old}, m_o \rangle, \langle \text{men}, m_m \rangle), \langle \text{women}, m_w \rangle) = \langle \text{old men and women}, m \rangle \\
G(\langle \text{old}, m_o \rangle, F(\langle \text{men}, m_m \rangle, \langle \text{women}, m_w \rangle)) = \langle \text{old men and women}, m' \rangle
\]
On the Saussurean account, we have rules F, G corresponding to f, g and μ for generating signs:

$$F(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cup m_2 \rangle$$
$$G(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cap m_2 \rangle$$

Atoms: $\langle \text{old}, m_o \rangle, \langle \text{men}, m_m \rangle, \langle \text{women}, m_w \rangle \in L$. Thus,

$$F(G(\langle \text{old}, m_o \rangle, \langle \text{men}, m_m \rangle), \langle \text{women}, m_w \rangle) = \langle \text{old men and women}, m \rangle$$
$$G(\langle \text{old}, m_o \rangle, F(\langle \text{men}, m_m \rangle, \langle \text{women}, m_w \rangle)) = \langle \text{old men and women}, m' \rangle$$

So $(\langle \text{old men and women}, m \rangle, \langle \text{old men and women}, m' \rangle)$ is a structural ambiguity.
Structural ambiguity, cont.

On the Saussurean account, we have rules F, G corresponding to f, g and μ for generating signs:

$$F(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cup m_2 \rangle$$
$$G(\langle e_1, m_1 \rangle, \langle e_2, m_2 \rangle) = \langle e_1 \text{ and } e_2, m_1 \cap m_2 \rangle$$

Atoms: $\langle \text{old}, m_o \rangle, \langle \text{men}, m_m \rangle, \langle \text{women}, m_w \rangle \in L$. Thus,

$$F(G(\langle \text{old}, m_o \rangle, \langle \text{men}, m_m \rangle), \langle \text{women}, m_w \rangle) = \langle \text{old men and women}, m \rangle$$
$$G(\langle \text{old}, m_o \rangle, F(\langle \text{men}, m_m \rangle, \langle \text{women}, m_w \rangle)) = \langle \text{old men and women}, m' \rangle$$

So $\langle \text{old men and women}, m \rangle, \langle \text{old men and women}, m' \rangle$ is a structural ambiguity.

Conclusion: In the sign-based format, terms (analysis trees) are not needed to account for lexical or structural ambiguity; it suffices with rules that apply to pairs.
Idioms

Are they needed at all?
Idioms

Are they needed at all?

Here is a case where it may seem so:
Idioms

Are they needed at all?

Here is a case where it may seem so:

Consider idioms that have **syntactic but no semantic structure**; a typical example is *kick the bucket*.
Idioms

Are they needed at all?

Here is a case where it may seem so:

Consider idioms that have **syntactic but no semantic structure**; a typical example is *kick the bucket*.

(These are called ‘non-compositional idioms’ in Nunberg, Sag, and Wasow’s classical 1994 paper; there are various tests by which they can be recognized, e.g. they do not passivize.)
Are they needed at all?

Here is a case where it may seem so:

Consider idioms that have syntactic but no semantic structure; a typical example is *kick the bucket*.

(These are called ‘non-compositional idioms’ in Nunberg, Sag, and Wasow’s classical 1994 paper; there are various tests by which they can be recognized, e.g. they do not passivize.)

Let’s agree that the phrase *kick the bucket* has the following characteristics:
kick the bucket

- *kick the bucket* has syntactic structure.
kick the bucket

- *kick the bucket* has syntactic structure. In fact, it is formed by the same rule as e.g. *lift the bucket*.

\[
\text{VP} \rightarrow \text{V NP}
\]
kick the bucket 1

- *kick the bucket* has syntactic structure. In fact, it is formed by the same
 \[VP \rightarrow V \ NP \]
 rule as e.g. *lift the bucket*.
- It is genuinely *ambiguous*.
kick the bucket

- *kick the bucket* has syntactic structure. In fact, it is formed by the same rule:
 \[\text{VP} \rightarrow \text{V} \text{ NP} \]
 as e.g. *lift the bucket*.
- It is genuinely ambiguous.

W-hl (2002) considered the ‘idiom extension problem’: suppose a phrase acquires an additional idiomatic meaning—how can we extend the grammar and the semantics while preserving compositionality?
kick the bucket 1

- *kick the bucket* has syntactic structure. In fact, it is formed by the same
 \[\text{VP} \rightarrow \text{V NP} \]
 rule as e.g. *lift the bucket*.
- It is genuinely ambiguous.

W-hl (2002) considered the ‘idiom extension problem’: suppose a phrase acquires an additional idiomatic meaning—how can we **extend** the grammar and the semantics while preserving compositionality?

For this kind of ambiguity, one suggestion was to add a **new name for the same rule** (function): say \(f_I \), with \(f^E = f^E_I \).
kick the bucket 1

- *kick the bucket* has syntactic structure. In fact, it is formed by the same
 \[\text{VP} \rightarrow \text{V NP} \]
 rule as e.g. *lift the bucket*.
- It is genuinely ambiguous.

W-hl (2002) considered the ‘idiom extension problem’: suppose a phrase acquires an additional idiomatic meaning—how can we extend the grammar and the semantics while preserving compositionality?

For this kind of ambiguity, one suggestion was to add a new name for the same rule (function): say \(f_I \), with \(f^E = f_I^E \).

So the same rule \((f^E) \) generates the idiomatic *kick the bucket*, the language has the same expressions as before, but different terms, and
\[
\mu(f(\text{kick, the bucket})) \neq \mu(f_I(\text{kick, the bucket}))
\]
(where \(r_{f_I}(m_0, m_1) = \text{DIE} \)).
Can the pair format handle this without the use of terms?
Can the pair format handle this without the use of terms?

Yes. If *kick the bucket* is ambiguous, we have two signs

\[\langle \text{kick the bucket}, m \rangle \text{ and } \langle \text{kick the bucket}, \text{DIE} \rangle \]
Can the pair format handle this without the use of terms?

Yes. If *kick the bucket* is ambiguous, we have two signs

\[
\langle \text{kick the bucket}, m \rangle \text{ and } \langle \text{kick the bucket}, \text{DIE} \rangle
\]

Its parts *kick* and *the bucket* have unique meanings (we may assume), so \(\langle \text{kick}, m_k \rangle \) and \(\langle \text{the bucket}, m_{tb} \rangle \) belong to \(L \), but no other pairs with these two expressions.
Can the pair format handle this without the use of terms?

Yes. If *kick the bucket* is ambiguous, we have two signs

\[\langle \text{kick the bucket}, m \rangle \text{ and } \langle \text{kick the bucket}, \text{DIE} \rangle \]

Its parts *kick* and *the bucket* have unique meanings (we may assume), so \(\langle \text{kick}, m_k \rangle \text{ and } \langle \text{the bucket}, m_{tb} \rangle \) belong to \(L \), but no other pairs with these two expressions. Since there is just one syntactic structure, no single function on signs can give the correct result.
Can the pair format handle this without the use of terms?

Yes. If *kick the bucket* is ambiguous, we have two signs

\[\langle \text{kick the bucket}, m \rangle \text{ and } \langle \text{kick the bucket}, \text{DIE} \rangle \]

Its parts *kick* and *the bucket* have unique meanings (we may assume), so \(\langle \text{kick}, m_k \rangle \) and \(\langle \text{the bucket}, m_{tb} \rangle \) belong to \(L \), but no other pairs with these two expressions. Since there is just one syntactic structure, no one function on signs can give the correct result.

But in fact the earlier idea works even better here.
Can the pair format handle this without the use of terms?

Yes. If *kick the bucket* is ambiguous, we have two signs

\[\langle \textit{kick the bucket}, m \rangle \text{ and } \langle \textit{kick the bucket}, \text{DIE} \rangle \]

Its parts *kick* and *the bucket* have unique meanings (we may assume), so \[\langle \textit{kick}, m_k \rangle \text{ and } \langle \textit{the bucket}, m_{tb} \rangle \] belong to \(L \), but no other pairs with these two expressions. Since there is just one syntactic structure, no one function on signs can give the correct result.

But in fact the earlier idea works even better here. Before we had two function symbols denoting the same rule (looks like a hack).
Can the pair format handle this without the use of terms?

Yes. If *kick the bucket* is ambiguous, we have two signs

\[\langle \textit{kick the bucket}, m \rangle \text{ and } \langle \textit{kick the bucket}, \text{DIE} \rangle \]

Its parts *kick* and *the bucket* have unique meanings (we may assume), so
\[\langle \textit{kick}, m_k \rangle \text{ and } \langle \textit{the bucket}, m_{tb} \rangle \]
belong to \(L \), but no other pairs with these two expressions. Since there is just one syntactic structure, no \textit{one} function on signs can give the correct result.

But in fact the earlier idea works even better here. Before we had two function symbols denoting the same rule (looks like a hack).

Now we have two different rules on pairs:

\[f^L(\langle \textit{kick}, m_k \rangle, \langle \textit{the bucket}, m_{tb} \rangle) = \langle \textit{kick the bucket}, m \rangle \]
\[f^L_I(\langle \textit{kick}, m_k \rangle, \langle \textit{the bucket}, m_{tb} \rangle) = \langle \textit{kick the bucket}, \text{DIE} \rangle \]
Can the pair format handle this without the use of terms?

Yes. If *kick the bucket* is ambiguous, we have two signs

\[\langle \textit{kick the bucket}, m \rangle \text{ and } \langle \textit{kick the bucket}, \text{DIE} \rangle\]

Its parts *kick* and *the bucket* have unique meanings (we may assume), so \(\langle \textit{kick}, m_k \rangle\) and \(\langle \textit{the bucket}, m_{tb} \rangle\) belong to \(L\), but no other pairs with these two expressions. Since there is just one syntactic structure, no one function on signs can give the correct result.

But in fact the earlier idea works even better here. Before we had two function symbols denoting the same rule (looks like a hack).

Now we have two different rules on pairs:

\[f_L^L(\langle \textit{kick}, m_k \rangle, \langle \textit{the bucket}, m_{tb} \rangle) = \langle \textit{kick the bucket}, m \rangle\]
\[f_j^L(\langle \textit{kick}, m_k \rangle, \langle \textit{the bucket}, m_{tb} \rangle) = \langle \textit{kick the bucket}, \text{DIE} \rangle\]

Learning the idiom is simply learning the new rule \(f_j^L\)
Two algebraic formats

We saw that the classical set-up can be viewed as a **syntactic algebra**

$$E = (E, A, f^E)_{f \in \Sigma}$$

generating E from the atoms in $A \subseteq E$ via the functions f^E, and the **semantics** as a partial function

$$\mu: GT_E \rightarrow M$$

from terms in the corresponding term algebra GT_E to M.
Two algebraic formats

We saw that the classical set-up can be viewed as a **syntactic algebra**

\[E = (E, A, f^E)_{f \in \Sigma} \]

generating \(E \) from the atoms in \(A \subseteq E \) via the functions \(f^E \), and the **semantics** as a partial function

\[\mu: GT_E \rightarrow M \]

from terms in the corresponding term algebra \(GT_E \) to \(M \).

\(E \) and \(GT_E \) are **partial** algebras (to avoid syntactic categories).
Two algebraic formats

We saw that the classical set-up can be viewed as a **syntactic algebra**

\[E = (E, A, f^E)_{f \in \Sigma} \]

generating \(E \) from the atoms in \(A \subseteq E \) via the functions \(f^E \), and the **semantics** as a partial function

\[\mu : GT_E \rightarrow M \]

from terms in the corresponding term algebra \(GT_E \) to \(M \).

\(E \) and \(GT_E \) are **partial** algebras (to avoid syntactic categories).

Similarly, a sign-based setting consists of a **pair grammar**

\[L = (L, A_L, f^L)_{f \in \Delta} \]

where \(L \subseteq E \times M \) is generated from the atomic pairs in \(A_L \subseteq L \) by the grammar rules (partial functions) \(f^L \).
Two algebraic formats

We saw that the classical set-up can be viewed as a syntactic algebra

$$E = (E, A, f^E)_{f \in \Sigma}$$

generating E from the atoms in $A \subseteq E$ via the functions f^E, and the semantics as a partial function

$$\mu : \text{GT}_E \rightarrow M$$

from terms in the corresponding term algebra GT_E to M.

E and GT_E are partial algebras (to avoid syntactic categories).

Similarly, a sign-based setting consists of a pair grammar

$$L = (L, A_L, f^L)_{f \in \Delta}$$

where $L \subseteq E \times M$ is generated from the atomic pairs in $A_L \subseteq L$ by the grammar rules (partial functions) f^L.

The grammar functions take care of both syntax and semantics (‘in tandem’).
Compositionality in the classical setting

Given \(E \), a semantics \(\mu \) for \(E \) is \textit{compositional} if

\[
\text{Funct}(\mu) \quad \text{for each } f \in \Sigma \text{ there is an operation } r_f \text{ such that if } f(t_1, \ldots, t_n) \in \text{dom}(\mu), \text{ then } \mu(f(t_1, \ldots, t_n)) = r_f(\mu(t_1), \ldots, \mu(t_n))
\]
Compositionality in the classical setting

Given E, a semantics μ for E is **compositional** if

$\text{Funct}(\mu)$ for each $f \in \Sigma$ there is an operation r_f such that if $f(t_1, \ldots, t_n) \in \text{dom}(\mu)$, then $\mu(f(t_1, \ldots, t_n)) = r_f(\mu(t_1), \ldots, \mu(t_n))$

Equivalently, letting $t \equiv_\mu u$ iff $\mu(t), \mu(u)$ are both defined and $\mu(t) = \mu(u)$

we have (provided subterms of meaningful terms are always meaningful) the substitution version:

$\text{Subst}(\equiv_\mu)$ If $s[t_1, \ldots, t_k]$ and $s[u_1, \ldots, u_k]$ are both in $\text{dom}(\mu)$, and $t_i \equiv_\mu u_i$ for $i = 1, \ldots, n$, then $s[t_1, \ldots, t_k] \equiv_\mu s[u_1, \ldots, u_k]$
Compositionality in the classical setting

Given E, a semantics μ for E is **compositional** if

For each $f \in \Sigma$ there is an operation r_f such that if $f(t_1, \ldots, t_n) \in \text{dom}(\mu)$, then $\mu(f(t_1, \ldots, t_n)) = r_f(\mu(t_1), \ldots, \mu(t_n))$

Equivalently, letting

$t \equiv_\mu u$ iff $\mu(t), \mu(u)$ are both defined and $\mu(t) = \mu(u)$

we have (provided subterms of meaningful terms are always meaningful) the substitution version:

If $s[t_1, \ldots, t_k]$ and $s[u_1, \ldots, u_k]$ are both in $\text{dom}(\mu)$, and $t_i \equiv_\mu u_i$ for $i = 1, \ldots, n$, then $s[t_1, \ldots, t_k] \equiv_\mu s[u_1, \ldots, u_k]$

(Here t_1, \ldots, t_k are **disjoint subterm occurrences** in s.)
What is compositionality in a sign-based framework?
What is compositionality in a sign-based framework?

As Kracht observes, the traditional formulation of compositionality can still be used, but it takes on a new content: cf.

(i) (Classical) The meaning of a complex expression is determined by the meanings of its immediate constituent expressions and the mode of composition.
Saussurean compositionality

What is compositionality in a sign-based framework?

As Kracht observes, the traditional formulation of compositionality can still be used, but it takes on a new content: cf.

(i) (Classical) The meaning of a complex expression is determined by the meanings of its immediate constituent expressions and the mode of composition.

(ii) (Saussurean) The meaning of a complex sign is determined by the meanings of its immediate constituent signs and the mode of composition.
Saussurean compositionality

What is compositionality in a sign-based framework?

As Kracht observes, the traditional formulation of compositionality can still be used, but it takes on a new content: cf.

(i) (Classical) The meaning of a complex expression is determined by the meanings of its immediate constituent expressions and the mode of composition.

(ii) (Saussurean) The meaning of a complex sign is determined by the meanings of its immediate constituent signs and the mode of composition.

(ii) makes good sense: each sign has a unique meaning, constituency for signs is defined via the term algebra for $L = (L, A_L, f^L)_{f \in \Delta}$, and the modes of composition are the grammar rules f^L.
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs.

(ii) The expression of a sign is determined by the expressions of the constituent signs. Kracht calls this autonomy.

(iii) Both (i) and (ii) hold. Kracht calls this independence.
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this compositionality.
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this compositionality.

(ii) The expression of a sign is determined by the expressions of the constituent signs.
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this compositionality.

(ii) The expression of a sign is determined by the expressions of the constituent signs. Kracht calls this autonomy.
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this **compositionality**.

(ii) The expression of a sign is determined by the expressions of the constituent signs. Kracht calls this **autonomy**.

(iii) Both (i) and (ii) hold.
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this compositionality.

(ii) The expression of a sign is determined by the expressions of the constituent signs. Kracht calls this autonomy.

(iii) Both (i) and (ii) hold. Kracht calls this independence.
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this compositionality.

(ii) The expression of a sign is determined by the expressions of the constituent signs. Kracht calls this autonomy.

(iii) Both (i) and (ii) hold. Kracht calls this independence.

I will use these labels.
In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this compositionality.

(ii) The expression of a sign is determined by the expressions of the constituent signs. Kracht calls this autonomy.

(iii) Both (i) and (ii) hold. Kracht calls this independence.

I will use these labels.

Isn’t there also a more liberal version, where the meaning of a sign is determined by both the expressions and the meanings of its parts?
Three kinds of Saussurean compositionality

In a sign-based framework, there are essentially three notions of compositionality:

(i) The meaning of a sign is determined by the meanings of the constituent signs. Kracht calls this compositionality.

(ii) The expression of a sign is determined by the expressions of the constituent signs. Kracht calls this autonomy.

(iii) Both (i) and (ii) hold. Kracht calls this independence.

I will use these labels.

Isn't there also a more liberal version, where the meaning of a sign is determined by both the expressions and the meanings of its parts?

No. This is built into the sign-based format, where complex signs—and hence their meanings—are determined via the grammar rules by (the expressions and meanings of) their immediate constituent signs.
A contrast?

Does the last point mark a contrast between the standard format and the sign format?
A contrast?

Does the last point mark a contrast between the standard format and the sign format? In the former you can have recursive (not necessarily compositional!) composition operators:

\[\text{Rec(} \mu \text{)} \quad \text{for each } f \in \Sigma \text{ there is an operation } s_f \text{ such that if} \]
\[f(t_1, \ldots, t_n) \in \text{dom}(\mu), \text{ then} \]
\[\mu(f(t_1, \ldots, t_n)) = s_f(t_1, \ldots, t_n, \mu(t_1), \ldots, \mu(t_n)) \]
A contrast?

Does the last point mark a contrast between the standard format and the sign format? In the former you can have recursive (not necessarily compositional!) composition operators:

$$\text{Rec}(\mu) \text{ for each } f \in \Sigma \text{ there is an operation } s_f \text{ such that if }$$

$$f(t_1, \ldots, t_n) \in \text{dom}(\mu), \text{ then}$$

$$\mu(f(t_1, \ldots, t_n)) = s_f(t_1, \ldots, t_n, \mu(t_1), \ldots, \mu(t_n))$$

But there is no contrast. Such functions s_f always exist.
A contrast?

Does the last point mark a contrast between the standard format and the sign format? In the former you can have recursive (not necessarily compositional!) composition operators:

\[
\text{Rec}(\mu) \quad \text{for each } f \in \Sigma \text{ there is an operation } s_f \text{ such that if } f(t_1, \ldots, t_n) \in \text{dom}(\mu), \text{ then }
\]

\[
\mu(f(t_1, \ldots, t_n)) = s_f(t_1, \ldots, t_n, \mu(t_1), \ldots, \mu(t_n))
\]

But there is no contrast. Such functions \(s_f \) always exist.

Rec(\(\mu \)) only has bite if the \(s_f \) are required to be computable in some suitable sense (computation on meanings).
A contrast?

Does the last point mark a contrast between the standard format and the sign format? In the former you can have recursive (not necessarily compositional!) composition operators:

\[\text{Rec}(\mu) \] for each \(f \in \Sigma \) there is an operation \(s_f \) such that if \(f(t_1, \ldots, t_n) \in \text{dom}(\mu) \), then

\[\mu(f(t_1, \ldots, t_n)) = s_f(t_1, \ldots, t_n, \mu(t_1), \ldots, \mu(t_n)) \]

But there is no contrast. Such functions \(s_f \) always exist.

\text{Rec}(\mu) only has bite if the \(s_f \) are required to be computable in some suitable sense (computation on meanings).

In other words: once you have a sign-based grammar, or a standard grammar + semantics, it is trivial in both cases that the meanings of complex expressions are determined (not computable!) by the meanings of their immediate parts and the parts themselves (and the mode of composition).
Saussurean compositionality: precise versions

Recall that we use partial grammar functions, since we avoid categories.
Saussurean compositionality: precise versions

Recall that we use partial grammar functions, since we avoid categories. This entails that there are variants of the precise formulation of the three Saussurean notions, depending on when the composition operations are taken to be defined.
Saussurean compositionality: precise versions

Recall that we use partial grammar functions, since we avoid categories.

This entails that there are variants of the precise formulation of the three Saussurean notions, depending on when the composition operations are taken to be defined. Here we choose the following, for \(L = (L, A_L, f^L)_{f \in \Delta} \):

- \(L \) is **compositional** iff for each \(f \in \Delta \) there is an operation \(r_{2f} \) such that for \(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L \), if \(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle) \) is defined, then \(\pi_2(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{2f}(m_1, \ldots, m_n) \); undefined otherwise.

- \(L \) is **autonomous** iff for each \(f \in \Delta \) there is an operation \(r_{1f} \) such that for \(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L \), if \(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle) \) is defined, then \(\pi_1(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{1f}(e_1, \ldots, e_n) \); undefined otherwise.

- \(L \) is **independent** iff for each \(f \in \Delta \) there are operations \(r_{1f}, r_{2f} \) such that for \(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L \), if \(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle) \) is defined, then \(\pi_1(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{1f}(e_1, \ldots, e_n) \) and \(\pi_2(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{2f}(m_1, \ldots, m_n) \); undefined otherwise.
Saussurean compositionality: precise versions

Recall that we use partial grammar functions, since we avoid categories.

This entails that there are variants of the precise formulation of the three Saussurean notions, depending on when the composition operations are taken to be defined. Here we choose the following, for \(L = (L, A_L, f^L)_{f \in \Delta} \):

L is compositional iff for each \(f \in \Delta \) there is an operation \(r_{2f} \) such that for \(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L \), if \(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle) \) is defined, then
\[
\pi_2(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{2f}(m_1, \ldots, m_n); \text{undefined otherwise.}
\]

L is autonomous iff for each \(f \in \Delta \) there is an operation \(r_{1f} \) such that for \(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L \), if \(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle) \) is defined, then
\[
\pi_1(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{1f}(e_1, \ldots, e_n); \text{undefined otherwise.}
\]
Saussurean compositionality: precise versions

Recall that we use partial grammar functions, since we avoid categories.

This entails that there are variants of the precise formulation of the three Saussurean notions, depending on when the composition operations are taken to be defined. Here we choose the following, for $L = (L, A_L, f^L)_{f \in \Delta}$:

L is **compositional** iff for each $f \in \Delta$ there is an operation r_{2f} such that for $\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L$, if $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$ is defined, then

$$\pi_2(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{2f}(m_1, \ldots, m_n);$$

undefined otherwise.

L is **autonomous** iff for each $f \in \Delta$ there is an operation r_{1f} such that for $\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L$, if $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$ is defined, then

$$\pi_1(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{1f}(e_1, \ldots, e_n);$$

undefined otherwise.

L is **independent** iff for each $f \in \Delta$ there are operations r_{1f}, r_{2f} such that for $\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle \in L$, if $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$ is defined, then

$$\pi_1(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{1f}(e_1, \ldots, e_n)$$

$$\pi_2(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)) = r_{2f}(m_1, \ldots, m_n);$$

otherwise $r_{1f}(e_1, \ldots, e_n)$ or $r_{2f}(m_1, \ldots, m_n)$ is undefined.
A substitution version of Saussurean compositionality

Definition

L is **right-centered** if for all $f \in \Delta$, whenever $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$ is defined and $\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle \in L$, $f^L(\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle)$ is also defined.
A substitution version of Saussurean compositionality

Definition

L is right-centered if for all $f \in \Delta$, whenever $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$ is defined and $\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle \in L$, $f^L(\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle)$ is also defined.

Let, for L-terms p, q,

$$p \equiv^{2,L} q \text{ iff } \pi_2(val(p)) = \pi_2(val(q))$$
A substitution version of Saussurean compositionality

Definition

\(L \) is **right-centered** if for all \(f \in \Delta \), whenever \(f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle) \) is defined and \(\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle \in L \), \(f^L(\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle) \) is also defined.

Let, for \(L \)-terms \(p, q \),

\[p \equiv^{2,L} q \text{ iff } \pi_2(\text{val}(p)) = \pi_2(\text{val}(q)) \]

and consider the following property:

\(\text{Subst}(\equiv^{2,L}) \) If \(p[q_1, \ldots, q_n] \) and \(p[q'_1, \ldots, q'_n] \) are both in \(GT_L \), and \(q_i \equiv^{2,L} q'_i \) for \(1 \leq i \leq n \), then \(p[q_1, \ldots, q_n] \equiv^{2,L} p[q'_1, \ldots, q'_n] \).
A substitution version of Saussurean compositionality

Definition

L is right-centered if for all $f \in \Delta$, whenever $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$ is defined and $\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle \in L$, $f^L(\langle e'_1, m_1 \rangle, \ldots, \langle e'_n, m_n \rangle)$ is also defined.

Let, for L-terms p, q,

$$p \equiv^{2,L} q \text{ iff } \pi_2(val(p)) = \pi_2(val(q))$$

and consider the following property:

Subst($\equiv^{2,L}$) If $p[q_1, \ldots, q_n]$ and $p[q'_1, \ldots, q'_n]$ are both in GT_L, and $q_i \equiv^{2,L} q'_i$ for $1 \leq i \leq n$, then $p[q_1, \ldots, q_n] \equiv^{2,L} p[q'_1, \ldots, q'_n]$.

Fact

L is compositional iff it is right-centered and Subst($\equiv^{2,L}$) holds (similarly for autonomy and independence).
Recall that in the classical format, if the meaning function μ is one-one, i.e. if there are no non-trivial synonymies, then μ is trivially compositional (use the substitution version).
Recall that in the classical format, if the meaning function μ is one-one, i.e. if there are no non-trivial synonymies, then μ is trivially compositional (use the substitution version).

(Which again emphasizes the need for computability.)
Recall that in the classical format, if the meaning function μ is one-one, i.e. if there are no non-trivial synonymies, then μ is trivially compositional (use the substitution version).

(Which again emphasizes the need for computability.)

Recall also our earlier notions of a synonymy pair $(\langle e, m \rangle, \langle e', m \rangle)$, and an ambiguity pair $(\langle e, m \rangle, \langle e, m' \rangle)$.
Compositionality in the two frameworks

Application: trivial Saussurean compositionality

Recall that in the classical format, if the meaning function μ is one-one, i.e. if there are no non-trivial synonymies, then μ is trivially compositional (use the substitution version).

(Which again emphasizes the need for computability.)

Recall also our earlier notions of a synonymy pair ($\langle e, m \rangle, \langle e', m \rangle$), and an ambiguity pair ($\langle e, m \rangle, \langle e, m' \rangle$).

Fact

If L has no non-trivial synonymies (ambiguities), then any pair grammar for L is compositional (autonomous).
Notational variants?

Let $L = (L, A_L, f^L)_{f \in \Delta}$ be a pair grammar, where $L \subseteq E \times M$.

The two main problems are:

- the different treatments of ambiguity;
- translation works only when compositionality is assumed.
Comparing the two frameworks

Notational variants?

Let \(L = (L, A_L, f^L)_{f \in \Delta} \) be a pair grammar, where \(L \subseteq E \times M \). If there was a canonical way to associate a classical grammar \(E_L = (E, A, f^E)_{f \in \Delta} \) and a semantics \(\mu_L \) for \(E_L \) with values in \(M \) such that

(a) \(L \) is compositional iff \(\mu_L \) is compositional;
(b) \(\langle e, m \rangle \in L \) iff there is \(t \in GT_{E_L} \) such that \(val(t) = e \) and \(\mu_L(t) = m \),

then we might say that the classical version is a notational variant of the sign-based one.
Comparing the two frameworks

Notational variants?

Let $L = (L, A_L, f^L)_{f \in \Delta}$ be a pair grammar, where $L \subseteq E \times M$. If there was a canonical way to associate a classical grammar $E_L = (E, A, f^E)_{f \in \Delta}$ and a semantics μ_L for E_L with values in M such that

(a) L is compositional iff μ_L is compositional;
(b) $(e, m) \in L$ iff there is $t \in GT_{E_L}$ such that $val(t) = e$ and $\mu_L(t) = m$, then we might say that the classical version is a notational variant of the sign-based one.

And vice versa, if starting from a grammar $E = (E, A, f^E)_{f \in \Sigma}$ and a semantics μ for E with values in M, we could always find a pair grammar $L_{E, \mu}$ such that conditions corresponding to (a) and (b) hold.
Comparing the two frameworks

Notational variants?

Let $L = (L, A_L, f^L)_{f \in \Delta}$ be a pair grammar, where $L \subseteq E \times M$. If there was a canonical way to associate a classical grammar $E_L = (E, A, f^E)_{f \in \Delta}$ and a semantics μ_L for E_L with values in M such that

(a) L is compositional iff μ_L is compositional;
(b) $\langle e, m \rangle \in L$ iff there is $t \in GT_{E_L}$ such that $val(t) = e$ and $\mu_L(t) = m$,

then we might say that the classical version is a notational variant of the sign-based one.

And vice versa, if starting from a grammar $E = (E, A, f^E)_{f \in \Sigma}$ and a semantics μ for E with values in M, we could always find a pair grammar $L_{E, \mu}$ such that conditions corresponding to (a) and (b) hold.

But this is not really the case.
Notational variants?

Let $L = (L, A_L, f^L)_{f \in \Delta}$ be a pair grammar, where $L \subseteq E \times M$. If there was a canonical way to associate a classical grammar $E_L = (E, A, f^E)_{f \in \Delta}$ and a semantics μ_L for E_L with values in M such that

(a) L is compositional iff μ_L is compositional;
(b) $\langle e, m \rangle \in L$ iff there is $t \in GT_{E_L}$ such that $val(t) = e$ and $\mu_L(t) = m$,

then we might say that the classical version is a notational variant of the sign-based one.

And vice versa, if starting from a grammar $E = (E, A, f^E)_{f \in \Sigma}$ and a semantics μ for E with values in M, we could always find a pair grammar $L_{E,\mu}$ such that conditions corresponding to (a) and (b) hold.

But this is not really the case.

The two main problems are:

- the different treatments of ambiguity;
- translation works only when compositionality is assumed.
Comparing the two frameworks
Translations I

From pair grammars to classical grammars + semantics 1

Let $L = (L, A_L, f^L)_{f \in \Delta}$ be an independent pair grammar, so that for each $f \in \Delta$, the composition operations r_{1f} and r_{2f} are given.
Let $L = (L, A_L, f^L)_{f \in \Delta}$ be an independent pair grammar, so that for each $f \in \Delta$, the composition operations r_1f and r_2f are given. Let

$$AE_L = \{e : \exists m \langle e, m \rangle \in A_L\}$$
Comparing the two frameworks
Translations I

From pair grammars to classical grammars + semantics 1

Let $L = (L, A_L, f^L)_{f \in \Delta}$ be an independent pair grammar, so that for each $f \in \Delta$, the composition operations r_{1f} and r_{2f} are given. Let

$$AE_L = \{ e : \exists m \langle e, m \rangle \in A_L \}$$

Lemma

$E_L = (E, AE_L, r_{1f})_{f \in \Delta}$ is a syntactic algebra: E is generated from AE_L via the r_{1f}.
Comparing the two frameworks

Translations I

From pair grammars to classical grammars $+$ semantics I

Let $L = (L, A_L, f^L)_{f \in \Delta}$ be an independent pair grammar, so that for each $f \in \Delta$, the composition operations r_{1f} and r_{2f} are given. Let

$$AE_L = \{e : \exists m \langle e, m \rangle \in A_L\}$$

Lemma

$E_L = (E, AE_L, r_{1f})_{f \in \Delta}$ is a syntactic algebra: E is generated from AE_L via the r_{1f}.

Proof.

By independence (essentially autonomy) of L. \square
Comparing the two frameworks
Translations I

From pair grammars to classical grammars + semantics 1

Let \(L = (L, A_L, f^L)_{f \in \Delta} \) be an independent pair grammar, so that for each \(f \in \Delta \), the composition operations \(r_{1f} \) and \(r_{2f} \) are given. Let

\[
AE_L = \{ e : \exists m \langle e, m \rangle \in A_L \}
\]

Lemma

\(E_L = (E, AE_L, r_{1f})_{f \in \Delta} \) is a syntactic algebra: \(E \) is generated from \(AE_L \) via the \(r_{1f} \).

Proof.

By independence (essentially autonomy) of \(L \). \(\square \)

But to obtain a semantics, we must assume that there is no lexical ambiguity, in the following sense:

\((NLA)\) \(\langle e, m \rangle \in A_L \) implies \(\forall m' (\langle e, m' \rangle \in L \Rightarrow m' = m) \)
Comparing the two frameworks
Translations I

From pair grammars to classical grammars + semantics 1

Let \(L = (L, A_L, f^L)_{f \in \Delta} \) be an independent pair grammar, so that for each \(f \in \Delta \), the composition operations \(r_1f \) and \(r_2f \) are given. Let \(AE_L = \{ e : \exists m \langle e, m \rangle \in A_L \} \)

Lemma

\(E_L = (E, AE_L, r_1f)_{f \in \Delta} \) is a syntactic algebra: \(E \) is generated from \(AE_L \) via the \(r_1f \).

Proof.

By independence (essentially autonomy) of \(L \).

But to obtain a semantics, we must assume that there is no lexical ambiguity, in the following sense:

\((\text{NLA})\) \(\langle e, m \rangle \in A_L \) implies \(\forall m' (\langle e, m' \rangle \in L \Rightarrow m' = m) \)

Thus, \(a \in AE_L \) has a unique meaning \(\mu_L(a) \in M \).
Comparing the two frameworks Translations I

From pair grammars to classical grammars + semantics 1

Let \(L = (L, A_L, f^L)_{f \in \Delta} \) be an independent pair grammar, so that for each \(f \in \Delta \), the composition operations \(r_{1f} \) and \(r_{2f} \) are given. Let

\[
AE_L = \{ e : \exists m \langle e, m \rangle \in A_L \}
\]

Lemma

\(E_L = (E, AE_L, r_{1f})_{f \in \Delta} \) is a syntactic algebra: \(E \) is generated from \(AE_L \) via the \(r_{1f} \).

Proof.

By independence (essentially autonomy) of \(L \).

But to obtain a semantics, we must assume that there is no lexical ambiguity, in the following sense:

\[(NLA) \quad \langle e, m \rangle \in A_L \text{ implies } \forall m' (\langle e, m' \rangle \in L \Rightarrow m' = m)\]

Thus, \(a \in AE_L \) has a unique meaning \(\mu_L(a) \in M \). When forming \(GT_{E_L} \) we can identify the atomic terms with the atomic expressions, and define the complex (grammatical) terms in \(GT_{E_L} \) as usual via the \(r_{1f} \), simultaneously with the surjective homomorphism, call it \(val^E \), from terms to \(E \).
Finally, we inductively extend μ_L to (some) terms t in GT_{E_L}, s.t. that for each t in $\text{dom}(\mu_L)$, $\langle \text{val}^E(t), \mu_L(t) \rangle \in L$:
Finally, we inductively extend μ_L to (some) terms t in GT_{E_L}, s.t. that for each t in $\text{dom}(\mu_L)$, $\langle \text{val}^E(t), \mu_L(t) \rangle \in L$:

Suppose $t = f(t_1, \ldots, t_n)$, where (ind. hyp.) $\text{val}^E(t_i) = e_i$, $\mu_L(t_i) = m_i$, and $\langle e_i, m_i \rangle \in L$. Since t is well-formed, $r_1f(e_1, \ldots, e_n)$ is defined. If $r_2f(m_1, \ldots, m_n)$ is also defined, then, by independence, so is $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$, say with value $\langle e, m \rangle$, and we let $\mu_L(t) = m = r_2f(m_1, \ldots, m_n)$. If not, $\mu_L(t)$ is undefined.
Comparing the two frameworks

Translations I

From pair grammars to classical grammars + semantics

Finally, we inductively extend μ_L to (some) terms t in GT_{E_L}, s.t. that for each t in $\text{dom}(\mu_L)$, $\langle \text{val}^E(t), \mu_L(t) \rangle \in L$:

Suppose $t = f(t_1, \ldots, t_n)$, where (ind. hyp.) $\text{val}^E(t_i) = e_i$, $\mu_L(t_i) = m_i$, and $\langle e_i, m_i \rangle \in L$. Since t is well-formed, $r_1f(e_1, \ldots, e_n)$ is defined. If $r_2f(m_1, \ldots, m_n)$ is also defined, then, by independence, so is $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$, say with value $\langle e, m \rangle$, and we let $\mu_L(t) = m = r_2f(m_1, \ldots, m_n)$. If not, $\mu_L(t)$ is undefined.

Theorem

If $L = (L, A_L, f^L)_{f \in \Delta}$ is independent and has no lexical ambiguity, then μ_L is a compositional semantics for E_L, and the function

$$h(t) = \langle \text{val}^E(t), \mu_L(t) \rangle$$

is a surjective homomorphism from GT_{E_L} to L.
Finally, we inductively extend μ_L to (some) terms t in GT_{E_L}, s.t. that for each t in $\text{dom}(\mu_L)$, $\langle \text{val}^E(t), \mu_L(t) \rangle \in L$:

Suppose $t = f(t_1, \ldots, t_n)$, where (ind. hyp.) $\text{val}^E(t_i) = e_i$, $\mu_L(t_i) = m_i$, and $\langle e_i, m_i \rangle \in L$. Since t is well-formed, $r_1f(e_1, \ldots, e_n)$ is defined. If $r_2f(m_1, \ldots, m_n)$ is also defined, then, by independence, so is $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$, say with value $\langle e, m \rangle$, and we let $\mu_L(t) = m = r_2f(m_1, \ldots, m_n)$. If not, $\mu_L(t)$ is undefined.

Theorem

If $L = (L, A_L, f^L)_{f \in \Delta}$ is independent and has no lexical ambiguity, then μ_L is a compositional semantics for E_L, and the function

$$h(t) = \langle \text{val}^E(t), \mu_L(t) \rangle$$

is a surjective homomorphism from GT_{E_L} to L. Thus, for $\langle e, m \rangle \in E \times M$, $\langle e, m \rangle \in L$ iff for some $t \in GT_{E_L}$, $\text{val}^E(t) = e$ and $\mu_L(t) = m$.
Finally, we inductively extend μ_L to (some) terms t in GT_{E_L}, s.t. that for each t in $\text{dom}(\mu_L)$, $\langle \text{val}^E(t), \mu_L(t) \rangle \in L$:

Suppose $t = f(t_1, \ldots, t_n)$, where (ind. hyp.) $\text{val}^E(t_i) = e_i$, $\mu_L(t_i) = m_i$, and $\langle e_i, m_i \rangle \in L$. Since t is well-formed, $r_1f(e_1, \ldots, e_n)$ is defined. If $r_2f(m_1, \ldots, m_n)$ is also defined, then, by independence, so is $f^L(\langle e_1, m_1 \rangle, \ldots, \langle e_n, m_n \rangle)$, say with value $\langle e, m \rangle$, and we let $\mu_L(t) = m = r_2f(m_1, \ldots, m_n)$. If not, $\mu_L(t)$ is undefined.

Theorem

If $L = (L, A_L, f^L)_{f \in \Delta}$ is independent and has no lexical ambiguity, then μ_L is a compositional semantics for E_L, and the function

$$h(t) = \langle \text{val}^E(t), \mu_L(t) \rangle$$

is a surjective homomorphism from GT_{E_L} to L. Thus, for $\langle e, m \rangle \in E \times M$, $\langle e, m \rangle \in L$ iff for some $t \in GT_{E_L}$, $\text{val}^E(t) = e$ and $\mu_L(t) = m$.

Proof.

For $f \in \Delta$, the composition operation r_f is r_2f.

\(\square\)
NB h need not be injective. (There could be distinct terms with same surface form and same meaning.)
NB h need not be injective. (There could be distinct terms with same surface form and same meaning.)

NB The proof does not work without the r_1f and the r_2f, i.e. the assumption of independence.
From pair grammars to classical grammars + semantics 3

NB h need not be injective. (There could be distinct terms with same surface form and same meaning.)

NB The proof does not work without the r_{1f} and the r_{2f}, i.e. the assumption of independence.

Essentially, the result says that if we start with a sign-based grammar and want to turn it into the classical format, we shall only succeed if the sign-based grammar is independent.
Comparing the two frameworks

Translations I

From pair grammars to classical grammars + semantics 3

NB h need not be injective. (There could be distinct terms with same surface form and same meaning.)

NB The proof does not work without the r_{1f} and the r_{2f}, i.e. the assumption of independence.

Essentially, the result says that if we start with a sign-based grammar and want to turn it into the classical format, we shall only succeed if the sign-based grammar is independent.

Also, we must start by introducing new expressions ($bank_1$, $bank_2$, ...) to eliminate lexical ambiguity.
Now let a grammar $E = (E, A, f^E)_{f \in \Sigma}$ be given, with its corresponding set GT_E of grammatical terms and surjective homomorphism $val: GT_E \rightarrow E$, and a **compositional** semantics μ for E with values in M.
Now let a grammar $\mathbf{E} = (E, A, f^E)_{f \in \Sigma}$ be given, with its corresponding set GT_E of grammatical terms and surjective homomorphism $val: GT_E \to E$, and a compositional semantics μ for \mathbf{E} with values in M.

New atomic terms may have been added.
Comparing the two frameworks

From classical grammars + semantics to pair grammars

Now let a grammar $E = (E, A, f^E)_{f \in \Sigma}$ be given, with its corresponding set GT_E of grammatical terms and surjective homomorphism $val: GT_E \rightarrow E$, and a compositional semantics μ for E with values in M.

New atomic terms may have been added. We assume the set \overline{A} of atomic terms is well-behaved in the following sense:

(i) $t \in \overline{A}$ iff $val(t) \in A$

(ii) if $t, t' \in \overline{A}$, $t \neq t'$, and $val(t) = val(t')$, then $\mu(t) \neq \mu(t')$

(iii) $\overline{A} \subseteq dom(\mu)$
Comparing the two frameworks
Translations II

From classical grammars $+$ semantics to pair grammars

Now let a grammar $\mathbf{E} = (E, A, f^\mathbf{E})_{f \in \Sigma}$ be given, with its corresponding set $GT_\mathbf{E}$ of grammatical terms and surjective homomorphism $\text{val}: GT_\mathbf{E} \to E$, and a compositional semantics μ for \mathbf{E} with values in M.

New atomic terms may have been added. We assume the set \overline{A} of atomic terms is well-behaved in the following sense:

(i) $t \in \overline{A}$ iff $\text{val}(t) \in A$

(ii) if $t, t' \in \overline{A}$, $t \neq t'$, and $\text{val}(t) = \text{val}(t')$, then $\mu(t) \neq \mu(t')$

(iii) $\overline{A} \subseteq \text{dom}(\mu)$

Then define:

$$L_{\mathbf{E},\mu} = \{\langle \text{val}(t), \mu(t) \rangle : t \in \text{dom}(\mu)\}$$
Comparing the two frameworks

From classical grammars + semantics to pair grammars

Now let a grammar \(E = (E, A, f^E)_{f \in \Sigma} \) be given, with its corresponding set \(GT_E \) of grammatical terms and surjective homomorphism \(\text{val} : GT_E \rightarrow E \), and a compositional semantics \(\mu \) for \(E \) with values in \(M \).

New atomic terms may have been added. We assume the set \(\overline{A} \) of atomic terms is well-behaved in the following sense:

(i) \(t \in \overline{A} \) iff \(\text{val}(t) \in A \)

(ii) if \(t, t' \in \overline{A} \), \(t \neq t' \), and \(\text{val}(t) = \text{val}(t') \), then \(\mu(t) \neq \mu(t') \)

(iii) \(\overline{A} \subseteq \text{dom}(\mu) \)

Then define:

\[
L_{E,\mu} = \{ \langle \text{val}(t), \mu(t) \rangle : t \in \text{dom}(\mu) \} \\
At_{E,\mu} = \{ \langle e, m \rangle \in L_{E,\mu} : e \in A \}
\]
Comparing the two frameworks

From classical grammars + semantics to pair grammars 1

Now let a grammar $E = (E, A, f^E)_{f \in \Sigma}$ be given, with its corresponding set GT_E of grammatical terms and surjective homomorphism $\text{val}: GT_E \rightarrow E$, and a compositional semantics μ for E with values in M.

New atomic terms may have been added. We assume the set \overline{A} of atomic terms is well-behaved in the following sense:

(i) $t \in \overline{A}$ iff $\text{val}(t) \in A$

(ii) if $t, t' \in \overline{A}$, $t \neq t'$, and $\text{val}(t) = \text{val}(t')$, then $\mu(t) \neq \mu(t')$

(iii) $\overline{A} \subseteq \text{dom}(\mu)$

Then define:

$$L_{E,\mu} = \{\langle \text{val}(t), \mu(t) \rangle : t \in \text{dom}(\mu)\}$$

$$At_{E,\mu} = \{\langle e, m \rangle \in L_{E,\mu} : e \in A\}$$

and:
From classical grammars + semantics to pair grammars 2

For $f \in \Sigma$, define a partial function $f^{E,\mu}$ from $(L_{E,\mu})^n$ to $L_{E,\mu}$: given

$\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle$ in $L_{E,\mu}$, let

$$f^{E,\mu}(\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle) =$$

$$\langle \text{val}(f(t_1, \ldots, t_n)), \mu(f(t_1, \ldots, t_n)) \rangle$$

if $f(t_1, \ldots, t_n)$ is defined and in $\text{dom}(\mu)$; undefined otherwise.
Comparing the two frameworks
Translations II

From classical grammars + semantics to pair grammars 2

For \(f \in \Sigma \), define a partial function \(f^{E,\mu} \) from \((L_{E,\mu})^n\) to \(L_{E,\mu} \): given \(\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle \) in \(L_{E,\mu} \), let

\[
\begin{align*}
 f^{E,\mu}(\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle) &= \\
 \langle \text{val}(f(t_1, \ldots, t_n)), \mu(f(t_1, \ldots, t_n)) \rangle
\end{align*}
\]

if \(f(t_1, \ldots, t_n) \) is defined and in \(\text{dom}(\mu) \); undefined otherwise.

This is well-defined precisely because \(\mu \) is compositional.
From classical grammars + semantics to pair grammars 2

For \(f \in \Sigma \), define a partial function \(f^E,\mu \) from \((L_E,\mu)^n\) to \(L_E,\mu\): given \(\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle \) in \(L_E,\mu \), let

\[
f^E,\mu(\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle) = \langle \text{val}(f(t_1, \ldots, t_n)), \mu(f(t_1, \ldots, t_n)) \rangle
\]

if \(f(t_1, \ldots, t_n) \) is defined and in \(\text{dom}(\mu) \); undefined otherwise.

This is well-defined precisely because \(\mu \) is compositional. Let

\[
L_E,\mu = (L_E,\mu, At_E,\mu, f^E,\mu)_{f \in \Sigma}.
\]
From classical grammars + semantics to pair grammars 2

For \(f \in \Sigma \), define a partial function \(f^{E,\mu} \) from \((L_{E,\mu})^n\) to \(L_{E,\mu}\): given \(\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle \) in \(L_{E,\mu}\), let

\[
f^{E,\mu}(\langle \text{val}(t_1), \mu(t_1) \rangle, \ldots, \langle \text{val}(t_n), \mu(t_n) \rangle) = \langle \text{val}(f(t_1, \ldots, t_n)), \mu(f(t_1, \ldots, t_n)) \rangle
\]

if \(f(t_1, \ldots, t_n) \) is defined and in \(\text{dom}(\mu) \); undefined otherwise.

This is well-defined precisely because \(\mu \) is compositional. Let

\[
L_{E,\mu} = (L_{E,\mu}, A_{t_{E,\mu}}, f^{E,\mu})_{f \in \Sigma}.
\]

Theorem

(a) If \(\mu \) is a compositional semantics for \(E \) and \(GT_E \) has well-behaved atomic terms, then \(L_{E,\mu} \) is independent (with operations \(r_1f = f^E \) and \(r_2f = r_f \)), and we have \(\langle e, m \rangle \in L_{E,\mu} \) iff for some \(t \in GT_E \), \(\text{val}(t) = e \) and \(\mu(t) = m \).
From classical grammars + semantics to pair grammars 2

For \(f \in \Sigma \), define a partial function \(f^{E, \mu} \) from \((L_{E, \mu})^n\) to \(L_{E, \mu} \): given \(\langle val(t_1), \mu(t_1) \rangle, \ldots, \langle val(t_n), \mu(t_n) \rangle \) in \(L_{E, \mu} \), let

\[
f^{E, \mu}(\langle val(t_1), \mu(t_1) \rangle, \ldots, \langle val(t_n), \mu(t_n) \rangle) =
\langle val(f(t_1, \ldots, t_n)), \mu(f(t_1, \ldots, t_n)) \rangle
\]

if \(f(t_1, \ldots, t_n) \) is defined and in \(\text{dom}(\mu) \); undefined otherwise.

This is well-defined precisely because \(\mu \) is compositional. Let

\[
L_{E, \mu} = (L_{E, \mu}, At_{E, \mu}, f^{E, \mu})_{f \in \Sigma}.
\]

Theorem

(a) If \(\mu \) is a compositional semantics for \(E \) and \(GT_E \) has well-behaved atomic terms, then \(L_{E, \mu} \) is independent (with operations \(r_{1f} = f^E \) and \(r_{2f} = r_f \)), and we have \(\langle e, m \rangle \in L_{E, \mu} \) iff for some \(t \in GT_E \), \(val(t) = e \) and \(\mu(t) = m \).

(b) If in addition \((E, \mu)\) has no lexical ambiguity (so \(\overline{A} = A \)), then, applying the previous construction to \(L_{E, \mu} \), we get back what we started from, i.e. \(E_{L_{E, \mu}} = E \) and \(\mu_{L_{E, \mu}} = \mu \).
Suppose you work in a classical format with a grammar generating the syntax and a meaning assignment function providing the semantics, and you want to switch to a sign-based format.
Suppose you work in a classical format with a grammar generating the syntax and a meaning assignment function providing the semantics, and you want to switch to a sign-based format.

First you must deal with lexical ambiguity by using a well-behaved set of atomic terms.
Suppose you work in a classical format with a grammar generating the syntax and a meaning assignment function providing the semantics, and you want to switch to a sign-based format.

First you must deal with lexical ambiguity by using a well-behaved set of atomic terms.

Then you can give a corresponding pair grammar, which will be independent provided your semantics was compositional.
Suppose you work in a classical format with a grammar generating the syntax and a meaning assignment function providing the semantics, and you want to switch to a sign-based format.

First you must deal with lexical ambiguity by using a well-behaved set of atomic terms.

Then you can give a corresponding pair grammar, which will be independent provided your semantics was compositional.

But if the semantics was not compositional, there need be no way to define a corresponding pair grammar (in the sense of the Theorem).
Suppose you work in a classical format with a grammar generating the syntax and a meaning assignment function providing the semantics, and you want to switch to a sign-based format.

First you must deal with lexical ambiguity by using a well-behaved set of atomic terms.

Then you can give a corresponding pair grammar, which will be independent provided your semantics was compositional.

But if the semantics was not compositional, there need be no way to define a corresponding pair grammar (in the sense of the Theorem).

We could conclude that, modulo ambiguity issues, the independent Saussurean pair grammar is indeed a notational variant (but in a rather weaker sense than I used before) of a classical style grammar and a compositional semantics.
Classical grammars + semantics vs. pair grammars

The correspondence seems to be something like this (disregarding issues of ambiguity and synonymy):

classical grammar + comp. semantics \cong indep. pair grammar
Classical grammars + semantics vs. pair grammars

The correspondence seems to be something like this (disregarding issues of ambiguity and synonymy):

- classical grammar + comp. semantics \rightarrow indep. pair grammar
- classical grammar + non-comp. semantics \rightarrow ?
Classical grammars + semantics vs. pair grammars

The correspondence seems to be something like this (disregarding issues of ambiguity and synonymy):

- Classical grammar + comp. semantics \sim indep. pair grammar
- Classical grammar + non-comp. semantics \sim non-indep. pair grammar
Chris Potts, ‘The dimensions of quotation’ (2007)

This paper illustrates several issues related to our discussion here.
Chris Potts, ‘The dimensions of quotation’ (2007)

This paper illustrates several issues related to our discussion here.

First, it gives an actual pair grammar L (for various interesting features of quotation).

More exactly, L generates triples of the form $⟨e, X, m⟩$ (where X is a syntactic category) with the quotation rule as a unary function on triples $q_L(⟨e, X, m⟩) = ⟨e, X, ⟨e, X, m⟩⟩$.

Second, L is claimed to be compositional. This is taken as an immediate corollary of the Direct Compositionality idea of syntax and semantics working ‘in tandem’.

Third, however, it is clear that the grammar L, although autonomous, is not compositional in our sense: precisely because of the rule q_L, substituting (terms denoting) triples with the same meaning does not preserve meaning. This illustrates the unclarity of the ‘in tandem’ idea: if it just means the pair (or triple) format, it says nothing about compositionality.
Chris Potts, ‘The dimensions of quotation’ (2007)

This paper illustrates several issues related to our discussion here.

First, it gives an actual pair grammar L (for various interesting features of quotation). More exactly, L generates triples of the form

$$\langle e, X, m \rangle \quad (X \text{ is a syntactic category})$$

with the quotation rule as a unary function on triples

$$(q) \quad q^L(\langle e, X, m \rangle) = \langle e, X, \langle e, X, m \rangle \rangle$$
This paper illustrates several issues related to our discussion here.

First, it gives an actual pair grammar L (for various interesting features of quotation). More exactly, L generates triples of the form
\[\langle e, X, m \rangle \quad (X \text{ is a syntactic category}) \]
with the quotation rule as a unary function on triples
\[(q) \quad q^L(\langle e, X, m \rangle) = \langle e, X, \langle e, X, m \rangle \rangle \]

Second, L is claimed to be compositional.
Chris Potts, ‘The dimensions of quotation’ (2007)

This paper illustrates several issues related to our discussion here.

First, it gives an actual pair grammar L (for various interesting features of quotation). More exactly, L generates triples of the form

$\langle e, X, m \rangle$ \hspace{1em} (X is a syntactic category)

with the quotation rule as a unary function on triples

$$(q) \quad q^L(\langle e, X, m \rangle) = \langle e, X, \langle e, X, m \rangle \rangle$$

Second, L is claimed to be compositional. This is taken as an immediate corollary of the Direct Compositionality idea of syntax and semantics working ‘in tandem’.
This paper illustrates several issues related to our discussion here.

First, it gives an actual pair grammar L (for various interesting features of quotation). More exactly, L generates triples of the form

$$\langle e, X, m \rangle \quad (X \text{ is a syntactic category})$$

with the quotation rule as a unary function on triples

$$q_L(\langle e, X, m \rangle) = \langle e, X, \langle e, X, m \rangle \rangle$$

Second, L is claimed to be compositional. This is taken as an immediate corollary of the Direct Compositionality idea of syntax and semantics working ‘in tandem’.

Third, however, it is clear that the grammar L, although autonomous, is not compositional in our sense:
This paper illustrates several issues related to our discussion here.

First, it gives an actual pair grammar L (for various interesting features of quotation). More exactly, L generates triples of the form

$\langle e, X, m \rangle$ (where X is a syntactic category)

with the quotation rule as a unary function on triples

$(q) \quad q^L(\langle e, X, m \rangle) = \langle e, X, \langle e, X, m \rangle \rangle$

Second, L is claimed to be compositional. This is taken as an immediate corollary of the Direct Compositionality idea of syntax and semantics working ‘in tandem’.

Third, however, it is clear that the grammar L, although autonomous, is not compositional in our sense: precisely because of the rule q^L, substituting (terms denoting) triples with the same meaning does not preserve meaning.
This paper illustrates several issues related to our discussion here.

First, it gives an actual pair grammar \(L \) (for various interesting features of quotation). More exactly, \(L \) generates triples of the form:

\[
\langle e, X, m \rangle \quad (X \text{ is a syntactic category})
\]

with the quotation rule as a unary function on triples:

\[
(q) \quad q^L(\langle e, X, m \rangle) = \langle e, X, \langle e, X, m \rangle \rangle
\]

Second, \(L \) is claimed to be compositional. This is taken as an immediate corollary of the Direct Compositionality idea of syntax and semantics working ‘in tandem’.

Third, however, it is clear that the grammar \(L \), although autonomous, is not compositional in our sense: precisely because of the rule \(q^L \), substituting (terms denoting) triples with the same meaning does not preserve meaning.

This illustrates the unclarity of the ‘in tandem’ idea: if it just means the pair (or triple) format, it says nothing about compositionality.
But Potts could also turn the tables around and say: So what if it’s not compositional—it’s still a good grammar!
But Potts could also turn the tables around and say: So what if it’s not compositional—it’s still a good grammar!

He could also say that the use of the Saussurean format highlights new opportunities for the grammarian/semanticist.
But Potts could also turn the tables around and say: So what if it’s not compositional—it’s still a good grammar!

He could also say that the use of the Saussurean format highlights new opportunities for the grammarian/semanticist.

It can make sense (one might argue) to in some cases let the meaning of a pair (triple) depend not just on the meanings of its parts but also on their expressions, as Potts in fact does.
But Potts could also turn the tables around and say: So what if it’s not compositional—it’s still a good grammar!

He could also say that the use of the Saussurean format highlights new opportunities for the grammarian/semanticist.

It can make sense (one might argue) to in some cases let the meaning of a pair (triple) depend not just on the meanings of its parts but also on their expressions, as Potts in fact does.

Similarly, one can at least imagine letting the expression of a pair (triple) depend also on the meanings of its parts, in certain special cases (I don’t have any convincing examples of this, but cf. Lakoff).
But Potts could also turn the tables around and say: So what if it’s not compositional—it’s still a good grammar!

He could also say that the use of the Saussurean format highlights new opportunities for the grammarian/semanticist.

It can make sense (one might argue) to in some cases let the meaning of a pair (triple) depend not just on the meanings of its parts but also on their expressions, as Potts in fact does.

Similarly, one can at least imagine letting the expression of a pair (triple) depend also on the meanings of its parts, in certain special cases (I don’t have any convincing examples of this, but cf. Lakoff).

Although the existence of suitable composition functions can now be trivial, their computability is not.
Some pros of pair grammars:

- Just one set of rules.
Some pros of pair grammars:

- Just one set of rules.
- Pair grammars handle ambiguity better, and treat synonymy and ambiguity in an exactly parallel fashion.
Some pros of pair grammars:
- Just one set of rules.
- Pair grammars handle ambiguity better, and treat synonymy and ambiguity in an exactly parallel fashion.
- (Apparently) no need for analysis trees (also emphasized by Polly Jacobson).
Conclusions

Some pros of pair grammars:

- Just one set of rules.
- Pair grammars handle ambiguity better, and treat synonymy and ambiguity in an exactly parallel fashion.
- (Apparently) no need for analysis trees (also emphasized by Polly Jacobson).
- Although for independent pair grammars there is no difference from classical grammar + compositional semantics, pair grammars seem to lend themselves more easily to dealing with certain non-compositional phenomena such as quotation.
Some pros of pair grammars:

- Just one set of rules.
- Pair grammars handle ambiguity better, and treat synonymy and ambiguity in an exactly parallel fashion.
- (Apparently) no need for analysis trees (also emphasized by Polly Jacobson).
- Although for independent pair grammars there is no difference from classical grammar + compositional semantics, pair grammars seem to lend themselves more easily to dealing with certain non-compositional phenomena such as quotation.

The last point might just be a matter of taste though.
Conclusions

Some pros of pair grammars:

- Just one set of rules.
- Pair grammars handle ambiguity better, and treat synonymy and ambiguity in an exactly parallel fashion.
- (Apparently) no need for analysis trees (also emphasized by Polly Jacobson).
- Although for independent pair grammars there is no difference from classical grammar + compositional semantics, pair grammars seem to lend themselves more easily to dealing with certain non-compositional phenomena such as quotation.

The last point might just be a matter of taste though.

So far the only case of a realistic and fully specified computable but non-compositional grammar I have seen in the literature is the example by Potts just mentioned.
Further directions

NB The standard arguments for compositional semantics, in terms of learnability, productivity, systematicity, etc., show (at most) that computable (recursive) semantics is required.
Further directions

NB The standard arguments for compositional semantics, in terms of learnability, productivity, systematicity, etc., show (at most) that computable (recursive) semantics is required.

So why prefer compositionality?
Further directions

NB The standard arguments for compositional semantics, in terms of learnability, productivity, systematicity, etc., show (at most) that computable (recursive) semantics is required.

So why prefer compositionality?

This has been studied in terms of complexity by Peter Pagin, who shows:

- Under certain assumptions, *minimally complex* grammars + semantics are compositional,
Conclusions

Further directions

NB The standard arguments for compositional semantics, in terms of learnability, productivity, systematicity, etc., show (at most) that computable (recursive) semantics is required.

So why prefer compositionality?

This has been studied in terms of complexity by Peter Pagin, who shows:

- Under certain assumptions, **minimally complex** grammars + semantics are compositional, in fact compute meanings in linear time in the size of the input,
Further directions

NB The standard arguments for compositional semantics, in terms of learnability, productivity, systematicity, etc., show (at most) that computable (recursive) semantics is required.

So why prefer compositionality?

This has been studied in terms of complexity by Peter Pagin, who shows:

- Under certain assumptions, minimally complex grammars + semantics are compositional, in fact compute meanings in linear time in the size of the input,
- whereas there are examples of recursive but non-compositional grammars + semantics that need exponential time.
NB The standard arguments for compositional semantics, in terms of learnability, productivity, systematicity, etc., show (at most) that computable (recursive) semantics is required.

So why prefer compositionality?

This has been studied in terms of complexity by Peter Pagin, who shows:

- Under certain assumptions, minimally complex grammars + semantics are compositional, in fact compute meanings in linear time in the size of the input,
- whereas there are examples of recursive but non-compositional grammars + semantics that need exponential time.

Pagin & W-hl (2010) define ‘general compositionality’ (GC) and show that grammars for quotation and various intensional phenomena can be GC.
Further directions

NB The standard arguments for compositional semantics, in terms of learnability, productivity, systematicity, etc., show (at most) that computable (recursive) semantics is required.

So why prefer compositionality?

This has been studied in terms of complexity by Peter Pagin, who shows:

- Under certain assumptions, minimally complex grammars + semantics are compositional, in fact compute meanings in linear time in the size of the input,
- whereas there are examples of recursive but non-compositional grammars + semantics that need exponential time.

Pagin & W-hl (2010) define ‘general compositionality’ (GC) and show that grammars for quotation and various intensional phenomena can be GC.

TO DO: look at
- complexity results for general compositionality;
- evaluate the pair format vs. the standard format from this perspective.
THANK YOU